ar X iv : 0 90 4 . 36 08 v 1 [ m at h . C A ] 2 3 A pr 2 00 9 THREE RESULTS IN DUNKL ANALYSIS
نویسنده
چکیده
In this article, we establish first a geometric Paley–Wiener theorem for the Dunkl transform in the crystallographic case. Next we obtain an optimal bound for the L p → L norm of Dunkl translations in dimension 1. Finally we describe more precisely the support of the distribution associated to Dunkl translations in higher dimension.
منابع مشابه
ar X iv : 0 90 7 . 41 78 v 1 [ m at h . PR ] 2 3 Ju l 2 00 9 An Introduction to Stochastic PDEs
2 Some Motivating Examples 2 2.1 A model for a random string (polymer) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2.2 The stochastic Navier-Stokes equations . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.3 The stochastic heat equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.4 What have we learned? . . . . . . . . . . . . . . . . . . . . . ...
متن کاملar X iv : 0 90 4 . 09 09 v 1 [ m at h . FA ] 6 A pr 2 00 9 On Sobolev extension domains in R
We describe a class of Sobolev W k p -extension domains Ω ⊂ R n determined by a certain inner subhyperbolic metric in Ω. This enables us to characterize finitely connected Sobolev W 1 p -extension domains in R 2 for each p > 2 .
متن کاملar X iv : 0 90 4 . 23 13 v 1 [ m at h . FA ] 1 5 A pr 2 00 9 A DISCRETIZED APPROACH TO W . T . GOWERS ’ GAME
We give an alternative proof of W.T. Gowers' theorem on block bases in Banach spaces by reducing it to a discrete analogue on specific count-able nets.
متن کاملar X iv : 0 90 4 . 31 78 v 1 [ m at h . FA ] 2 1 A pr 2 00 9 TREE METRICS AND THEIR LIPSCHITZ - FREE SPACES
We compute the Lipschitz-free spaces of subsets of the real line and characterize subsets of metric trees by the fact that their Lipschitz-free space is isometric to a subspace of L1.
متن کاملar X iv : 0 90 4 . 21 99 v 1 [ m at h . L O ] 1 4 A pr 2 00 9 Independence - revision and defaults ∗
We investigate different aspects of independence here, in the context of theory revision, generalizing slightly work by Chopra, Parikh, and Rodrigues, and in the context of preferential reasoning.
متن کامل